Discordant extracellular superoxide dismutase expression and activity in neonatal hyperoxic lung.
نویسندگان
چکیده
Antioxidant defenses in the neonatal lung are required to adapt to the oxygen (O(2))-rich postnatal environment, and oxidant/antioxidant imbalance is a predisposition to lung injury when high concentrations of inspired O(2) are used in neonatal lung diseases. The lung's main extracellular enzymatic defense against superoxide, extracellular superoxide dismutase (EC-SOD), is closely regulated during development. In testing the hypothesis that developmental change in EC-SOD expression and activity in the immature lung would be disrupted by hyperoxia, we found a doubling of lung EC-SOD protein in newborn rats exposed to 95% O(2) for 1 week. Furthermore, EC-SOD protein secretion increased, but EC-SOD enzyme activity did not change with O(2) exposure. EC-SOD mRNA did not change at multiple points between 6 hours and 8 days. Lung EC-SOD recovered by immunoprecipitation after 1 week of O(2) showed strong increases in protein nitrotyrosine and variable, nonsignificant differences in protein carbonyl content. These data provide the first direct evidence that EC-SOD is itself a target of nitration in hyperoxia, and offer a plausible explanation for low EC-SOD activity despite its increased secretion by O(2)-exposed neonatal lung.
منابع مشابه
Secretion of extracellular superoxide dismutase in neonatal lungs.
Extracellular superoxide dismutase (EC-SOD), the only known enzymatic scavenger of extracellular superoxide, may modulate reactions of nitric oxide (NO) in the lungs by preventing reactions between superoxide and NO. The regulation of EC-SOD has not been examined in developing lungs. We hypothesize that EC-SOD plays a pivotal role in the response to increased oxygen tension and NO in the neonat...
متن کاملExtracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia.
Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene sh...
متن کاملRat lung Cu,Zn superoxide dismutase. Isolation and sequence of a full-length cDNA and studies of enzyme induction.
The synthesis of Cu,Zn SOD by rat lung increases spontaneously in the fetus in late gestation and during exposure of neonatal and adult rats to greater than 95% O2. To explore the regulation of these increases, we measured rat lung Cu,Zn SOD synthesis and activity. We also cloned and sequenced a rat lung Cu,Zn SOD cDNA that was used to measure Cu,Zn SOD mRNA concentration. We found that (a) und...
متن کاملAntioxidant Enzyme Activities and Antioxidant Enzyme Gene Expression in Hyperoxia-induced Lung Injury in Premature Rat
Preterm infants exposed to high concentration oxygen are prone to develop hyperoxic lung damage, which is an importan t underly ing cause of bronchopulmonary dysplasia (BPD).1 Although the causative agent for BPD has not been conclusively identified, hyperoxia-induced lung injury i s bel ieved to be a major factor. Data from both cellu lar and whole animal models suggest that hyperoxic lung dam...
متن کاملTime course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 170 3 شماره
صفحات -
تاریخ انتشار 2004